Indian Flag
Government Of India
A-
A
A+
Sanskrit ASR Benchmark Dataset: Noisy Speech Recognition

Sanskrit ASR Benchmark Dataset: Noisy Speech Recognition

Sanskrit ASR (Automatic Speech Recognition) benchmark noisy dataset from Bhashini for supporting the development of robust regional speech recognition systems.

About Dataset

This is a Sanskrit ASR benchmark dataset specifically designed to evaluate and improve Automatic Speech Recognition (ASR) systems in noisy and challenging scenarios, particularly in the general domain. The dataset comprises 1684 hours of labeled speech data across 12 Indian languages, with a focus on Sanskrit. This dataset variant, known as "Kathbath-Sanskrit-Noisy-Test-Known," provides researchers and developers with a valuable resource for building robust ASR models capable of handling real-world noisy conditions. Submitted by Tahir Javed, it supports advancements in speech recognition technologies for regional languages.

Activity Overview Activity Overview

  • Downloads0
  • Downloads 27
  • Views 343
  • File Size 554.67 MB

Tags Tags

  • NLP Dataset
  • Benchmark
  • General Domain
  • Automatic Speech Recognition
  • Speech Technology
  • ASR
  • Regional Languages
  • Noisy Data
  • Audio Processing
  • Sanskrit
  • Tahir Javed

License Control License Control

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

844424930589497-277-f.wav ( 359.99 KB )


To preview this file, you need to be a registered user. Please complete the registration process to gain access and continue viewing the content.

Data Quality Score BetaData Quality Score Beta

Version Control Version Control

FolderVersion 1(554.67 MB)
  • admin·11 month(s) ago
    • chevron_rightFolder
      audios
      • audio/wav
        844424930589497-277-f.wav
      • audio/wav
        844424930589502-277-f.wav
      • audio/wav
        844424930589515-277-f.wav
      • audio/wav
        844424930589530-277-f.wav
      • audio/wav
        844424930589533-277-f.wav
      • audio/wav
        844424930589584-277-f.wav
      • audio/wav
        844424930613356-1177-f.wav
      • audio/wav
        844424930613382-1177-f.wav
      • audio/wav
        844424930623631-277-f.wav
      • audio/wav
        844424930623659-277-f.wav
      • more_horiz 1573 more
    • application/json
      data.json
    • application/json
      params.json