Indian Flag
Government Of India
A-
A
A+
Multilingual Malayalam ASR Benchmark Dataset: Kathbath Malayalam Test Unknown

Multilingual Malayalam ASR Benchmark Dataset: Kathbath Malayalam Test Unknown

Malayalam ASR (Automatic Speech Recognition) benchmark test dataset from Bhashini for supporting the development of robust regional speech recognition systems.

About Dataset

The Kathbath-Malayalam-Test-Unknown_1 dataset is an Automatic Speech Recognition (ASR) benchmark designed to evaluate the performance of ASR systems in Malayalam. With 1684 hours of labeled speech data spanning 12 Indian languages, this dataset is optimized for testing in general domains. Submitted by Tahir Javed, it serves as an essential resource for researchers and developers to advance ASR technologies for Malayalam and other regional Indian languages, contributing significantly to multilingual and regional language ASR systems.

Activity Overview Activity Overview

  • Downloads0
  • Downloads 6
  • Views 57
  • File Size 339.25 MB

Tags Tags

  • NLP Dataset
  • Benchmark
  • General Domain
  • Automatic Speech Recognition
  • Malayalam
  • Speech Technology
  • ASR
  • Regional Languages
  • Indian Languages
  • Multilingual Dataset
  • Audio Processing

License Control License Control

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

844424930927428-83-f.wav ( 197.45 KB )


To preview this file, you need to be a registered user. Please complete the registration process to gain access and continue viewing the content.

Data Quality Score BetaData Quality Score Beta

Version Control Version Control

FolderVersion 1(339.25 MB)
  • admin·11 month(s) ago
    • chevron_rightFolder
      audios
      • audio/wav
        844424930927428-83-f.wav
      • audio/wav
        844424930927435-83-f.wav
      • audio/wav
        844424930927446-83-f.wav
      • audio/wav
        844424930927449-83-f.wav
      • audio/wav
        844424930927454-83-f.wav
      • audio/wav
        844424930927459-83-f.wav
      • audio/wav
        844424930927461-83-f.wav
      • audio/wav
        844424930927467-83-f.wav
      • audio/wav
        844424930927468-83-f.wav
      • audio/wav
        844424930927471-83-f.wav
      • more_horiz 1206 more
    • application/json
      data.json
    • application/json
      params.json