Indian Flag
Government Of India
A-
A
A+
Kathbath-Kannada-Valid: Multilingual ASR Validation Dataset for Kannada

Kathbath-Kannada-Valid: Multilingual ASR Validation Dataset for Kannada

Kannada ASR (Automatic Speech Recognition) benchmark validation dataset from Bhashini for supporting the development of robust regional speech recognition systems.

About Dataset

The Kathbath-Kannada-Valid dataset is a validation dataset curated to evaluate and enhance the performance of Automatic Speech Recognition (ASR) systems for Kannada. Comprising 1684 hours of labeled speech data across 12 Indian languages, this dataset serves as a vital resource for testing ASR systems in general-domain applications. Submitted by Tahir Javed, it aids in advancing speech recognition technologies for Kannada and other regional Indian languages, contributing to the development of robust multilingual ASR systems.

Activity Overview Activity Overview

  • Downloads0
  • Downloads 17
  • Views 222
  • File Size 551.46 MB

Tags Tags

  • NLP Dataset
  • Benchmark
  • Kannada
  • General Domain
  • Automatic Speech Recognition
  • Speech Technology
  • ASR
  • Regional Languages
  • Indian Languages
  • Multilingual Dataset
  • Audio Processing
  • Validation Dataset

License Control License Control

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

844424930298118-1182-f.wav ( 347.65 KB )


To preview this file, you need to be a registered user. Please complete the registration process to gain access and continue viewing the content.

Data Quality Score BetaData Quality Score Beta

Version Control Version Control

FolderVersion 1(551.46 MB)
  • admin·11 month(s) ago
    • chevron_rightFolder
      audios
      • audio/wav
        844424930298118-1182-f.wav
      • audio/wav
        844424930298183-1182-f.wav
      • audio/wav
        844424930298194-1182-f.wav
      • audio/wav
        844424930298304-441-m.wav
      • audio/wav
        844424930298566-22-f.wav
      • audio/wav
        844424930299289-235-f.wav
      • audio/wav
        844424930299293-235-f.wav
      • audio/wav
        844424930299816-316-f.wav
      • audio/wav
        844424930299821-316-f.wav
      • audio/wav
        844424930299823-316-f.wav
      • more_horiz 2140 more
    • application/json
      data.json
    • application/json
      params.json