Indian Flag
Government Of India
A-
A
A+
Kannada ASR Benchmark: Kathbath-Kannada-Test-Known

Kannada ASR Benchmark: Kathbath-Kannada-Test-Known

Kannada ASR (Automatic Speech Recognition) benchmark test dataset from Bhashini for supporting the development of robust regional speech recognition systems.

About Dataset

The Kathbath-Kannada-Test-Known dataset is a critical ASR benchmark dataset created to test and refine Automatic Speech Recognition (ASR) systems in Kannada. Spanning 1684 hours of labeled speech data across 12 Indian languages, it is designed to provide a robust evaluation resource for general-domain ASR applications. Submitted by Tahir Javed, this dataset supports the development and advancement of speech recognition technologies for Kannada and other regional Indian languages, contributing to multilingual and regional language ASR systems.

Activity Overview Activity Overview

  • Downloads0
  • Downloads 18
  • Views 156
  • File Size 550.91 MB

Tags Tags

  • NLP Dataset
  • Benchmark
  • Kannada
  • General Domain
  • Automatic Speech Recognition
  • Speech Technology
  • ASR
  • Regional Languages
  • Indian Languages
  • Multilingual Dataset
  • Audio Processing

License Control License Control

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

844424930298529-22-f.wav ( 265.65 KB )


To preview this file, you need to be a registered user. Please complete the registration process to gain access and continue viewing the content.

Data Quality Score BetaData Quality Score Beta

Version Control Version Control

FolderVersion 1(550.91 MB)
  • admin·11 month(s) ago
    • chevron_rightFolder
      audios
      • audio/wav
        844424930298529-22-f.wav
      • audio/wav
        844424930298579-22-f.wav
      • audio/wav
        844424930298980-1144-f.wav
      • audio/wav
        844424930299947-148-f.wav
      • audio/wav
        844424930300290-22-f.wav
      • audio/wav
        844424930300308-22-f.wav
      • audio/wav
        844424930300423-148-f.wav
      • audio/wav
        844424930300425-148-f.wav
      • audio/wav
        844424930300470-148-f.wav
      • audio/wav
        844424930301006-702-f.wav
      • more_horiz 2189 more
    • application/json
      data.json
    • application/json
      params.json