Indian Flag
Government Of India
A-
A
A+
Indian Multilingual ASR Dataset for Gujarati (Kathbath Gujarati Validation data)

Indian Multilingual ASR Dataset for Gujarati (Kathbath Gujarati Validation data)

Gujarati ASR (Automatic Speech Recognition) benchmark validation dataset from Bhashini for supporting the development of robust regional speech recognition systems.

About Dataset

The Kathbath dataset features 1684 hours of labeled speech data across 12 Indian languages, including Gujarati. This dataset is specifically designed to evaluate and develop Automatic Speech Recognition (ASR) systems for Indian languages in general-use scenarios. The "Valid" subset provides a validation set for fine-tuning and evaluating ASR models during the training process. Submitted by Tahir Javed, this dataset supports efforts to improve multilingual ASR systems in India.

Activity Overview Activity Overview

  • Downloads0
  • Downloads 6
  • Views 157
  • File Size 552.29 MB

Tags Tags

  • NLP Dataset
  • Benchmark
  • General Domain
  • Automatic Speech Recognition
  • Speech Technology
  • ASR
  • Regional Languages
  • Multilingual Dataset
  • Audio Processing
  • Kathbath
  • Validation Dataset
  • Tahir Javed
  • Gujarati

License Control License Control

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

844424930298311-1139-m.wav ( 195.99 KB )


To preview this file, you need to be a registered user. Please complete the registration process to gain access and continue viewing the content.

Data Quality Score BetaData Quality Score Beta

Version Control Version Control

FolderVersion 1(552.29 MB)
  • admin·11 month(s) ago
    • chevron_rightFolder
      audios
      • audio/wav
        844424930298311-1139-m.wav
      • audio/wav
        844424930298318-1139-m.wav
      • audio/wav
        844424930298328-1139-m.wav
      • audio/wav
        844424930298331-1139-m.wav
      • audio/wav
        844424930298340-1139-m.wav
      • audio/wav
        844424930298341-1139-m.wav
      • audio/wav
        844424930298345-1139-m.wav
      • audio/wav
        844424930298346-1139-m.wav
      • audio/wav
        844424930298351-1139-m.wav
      • audio/wav
        844424930298358-1139-m.wav
      • more_horiz 3129 more
    • application/json
      data.json
    • application/json
      params.json