Indian Flag
Government Of India
A-
A
A+
Gujarati ASR Dataset (Kathbath Test Unknown)

Gujarati ASR Dataset (Kathbath Test Unknown)

Gujarati ASR (Automatic Speech Recognition) benchmark test dataset from Bhashini for supporting the development of robust regional speech recognition systems.

About Dataset

The Kathbath dataset features 1684 hours of labeled speech data across 12 Indian languages, including Gujarati. This dataset is specifically designed to evaluate and develop Automatic Speech Recognition (ASR) systems for Indian languages in general-use scenarios. The "Test-Unknown" subset focuses on providing challenging test cases to evaluate ASR model robustness in less predictable contexts. Submitted by Tahir Javed, this dataset supports efforts to improve multilingual ASR systems in India.

Activity Overview Activity Overview

  • Downloads0
  • Downloads 13
  • Views 173
  • File Size 339.03 MB

Tags Tags

  • NLP Dataset
  • Benchmark
  • General Domain
  • Automatic Speech Recognition
  • Speech Technology
  • ASR
  • Regional Languages
  • Multilingual Dataset
  • Audio Processing
  • Kathbath
  • Tahir Javed
  • Test Dataset
  • Gujarati

License Control License Control

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

844424930303389-284-f.wav ( 389.01 KB )


To preview this file, you need to be a registered user. Please complete the registration process to gain access and continue viewing the content.

Data Quality Score BetaData Quality Score Beta

Version Control Version Control

FolderVersion 1(339.03 MB)
  • admin·11 month(s) ago
    • chevron_rightFolder
      audios
      • audio/wav
        844424930303389-284-f.wav
      • audio/wav
        844424930303390-284-f.wav
      • audio/wav
        844424930303391-284-f.wav
      • audio/wav
        844424930303398-284-f.wav
      • audio/wav
        844424930303400-284-f.wav
      • audio/wav
        844424930303402-284-f.wav
      • audio/wav
        844424930303403-284-f.wav
      • audio/wav
        844424930303405-284-f.wav
      • audio/wav
        844424930303407-284-f.wav
      • audio/wav
        844424930303408-284-f.wav
      • more_horiz 1756 more
    • application/json
      data.json
    • application/json
      params.json